A Short Proof for the Krull Dimension of a Polynomial Ring

نویسندگان

  • Thierry Coquand
  • Henri Lombardi
چکیده

A first important result in dimension theory is the fact that the Krull dimension of the ring K[X1, . . . , X`] is equal to ` when K is a field. In the literature this result is always obtained after some preliminary efforts that seem excessive for settling such an intuitive fact. For example, many authors rely on the principal ideal theorem of Krull, whose proof is very tricky. Matsumura [6,chap.2] gives a rather direct proof, but his Theorem 5.6 settling the result needs Theorems 5.1 to 5.5 together with three pages of rather subtle arguments, including Hilbert’s Nullstellensatz. The shortest proof we are aware of appears in [3]. The goal of this note is to give a short, direct proof of this fact, based on an elementary elementwise characterization of Krull dimension (Corollary 2).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On co-Noetherian dimension of rings

We define and studyco-Noetherian dimension of rings for which the injective envelopeof simple modules have finite Krull-dimension. This  is a Moritainvariant dimension that measures how far the ring is from beingco-Noetherian. The co-Noetherian dimension of certain rings,including commutative rings, are determined. It is shown that the class ${mathcal W}_n$ of rings with co-Noetherian dimension...

متن کامل

A short proof of the maximum conjecture in CR dimension one

In this paper and by means of the extant results in the Tanaka theory, we present a very short proof in the specific case of CR dimension one for Beloshapka's maximum conjecture. Accordingly, we prove that each totally nondegenerate model of CR dimension one and length >= 3 has rigidity. As a result, we observe that the group of CR automorphisms associated with each of such models contains onl...

متن کامل

On Gröbner bases and Krull dimension of residue class rings of polynomial rings over integral domains

Given an ideal a in A[x1, . . . , xn] where A is a Noetherian integral domain, we propose an approach to compute the Krull dimension of A[x1, . . . , xn]/a, when the residue class ring is a free A-module. When A is a field, the Krull dimension of A[x1, . . . , xn]/a has several equivalent algorithmic definitions by which it can be computed. But this is not true in the case of arbitrary Noetheri...

متن کامل

Essential Domains and Two Conjectures in Dimension Theory

This note investigates two long-standing conjectures on the Krull dimension of integer-valued polynomial rings and of polynomial rings, respectively, in the context of (locally) essential domains.

متن کامل

Domains and Two Conjectures in Dimension Theory

This note investigates two long-standing conjectures on the Krull dimension of integer-valued polynomial rings and of polynomial rings, respectively , in the context of (locally) essential domains.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The American Mathematical Monthly

دوره 112  شماره 

صفحات  -

تاریخ انتشار 2005